
Journal of Computational Physics 227 (2008) 10196–10208
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Deflated preconditioned conjugate gradient solvers
for the Pressure–Poisson equation

Romain Aubry, Fernando Mut, Rainald Löhner *, Juan R. Cebral
Center for Computational Fluid Dynamics, College of Sciences, M.S. 6A2, George Mason University, Fairfax, VA 2030-4444, USA
a r t i c l e i n f o

Article history:
Received 12 March 2008
Received in revised form 7 August 2008
Accepted 25 August 2008
Available online 12 September 2008

Keywords:
Conjugate gradients
Pressure–Poisson equation
Incompressible flow solvers
Finite elements
CFD
0021-9991/$ - see front matter � 2008 Published b
doi:10.1016/j.jcp.2008.08.025

* Corresponding author. Tel.: +1 703 993 3807.
E-mail addresses: rlohner@science.gmu.edu, rloh
a b s t r a c t

A deflated preconditioned conjugate gradient technique has been developed for the solu-
tion of the Pressure–Poisson equation within an incompressible flow solver. The deflation
is done using a region-based decomposition of the unknowns, making it extremely simple
to implement. The procedure has shown a considerable reduction in the number of itera-
tions. For grids with large graph-depth the savings exceed an order of magnitude. Further-
more, the technique has shown a remarkable insensitivity to the number of groups/regions
chosen, and to the way the groups are formed.

� 2008 Published by Elsevier Inc.
1. Introduction

Many solvers for the incompressible Navier–Stokes equations, given by
qv;t þ qvrvþrp ¼ rlrv; ð1Þ
r � v ¼ 0: ð2Þ
where q; v; p;l denote the density, velocity, pressure and viscosity of the fluid, are based on so-called projection techniques,
whereby the advancement of the flowfield in time is split into the following three substeps [22,2,23,3,32,15,1,17,37,13,24,
8,41,11,19,18,20,40,25–28]:

– Advective–diffusive prediction: vn ! v�
q
Dt
�rlr

h i
ðv� � vnÞ þ qvn � rvn þrpn ¼ rlrvn: ð3Þ
– Pressure correction: pn ! pnþ1
r � vnþ1 ¼ 0; ð4Þ

q
vnþ1 � v�

Dt
þrðpnþ1 � pnÞ ¼ 0; ð5Þ
which results in
y Elsevier Inc.

ner@gmu.edu (R. Löhner).

mailto:<xml_add>rlohner@science.gmu.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208 10197
r2ðpnþ1 � pnÞ ¼ qr � v�
Dt

: ð6Þ
– Velocity correction: v� ! vnþ1
vnþ1 ¼ v� � Dtrðpnþ1 � pnÞ: ð7Þ
The solution of the so-called Pressure–Poisson equation, given by Eq. (6), which results in a discrete system of the form:
A � x ¼ b: ð8Þ
is typically carried out with preconditioned conjugate gradient (PCG) solvers [38,40], and consumes a considerable percent-
age of the overall computational effort. Consequently, many attempts have been made to mitigate the impact of the Pres-
sure–Poisson equation on the overall cost of a simulation. Options that have proven useful include:

– Improved prediction of the starting value for the iterative solver [13,26];
– Linelet preconditioners for highly stretched (e.g. boundary layer) grids [32,40] (in the sequel diagonal preconditioning

is assumed to be the default for isotropic grids);
– Multistage or implicit treatment of the advective terms (more advective–diffusive work, allowing larger timesteps,

nearly the same work for the Pressure–Poisson equation) [25,27].

Several attempts have also been made to use multigrid solvers [52,3,1,46,47,7]. However, for unstructured grids the ex-
pected gains have proven elusive to date. Moreover, cases with moving and or adapting meshes place further burdens on
multigrid solvers vis a vis conjugate gradient solvers. The present paper describes a simple technique that has proven
remarkably robust, and that works extremely well for those cases where traditional PCGs perform poorly.

2. Deflated conjugate gradients

Nicolaides’ seminal paper [36] is perhaps the first paper to consider deflation methods for field solvers. The main concept
was to remove components of the initial residual which may improved convergence. As opposed to multigrid techniques
[33], no need for defining a smoother, a coarse grid or a prolongation/restriction operator is necessary. However, no numer-
ical experiments were reported in [36]. The first experiments supporting the theoretical results are found in Mansfield [29],
where the subdomain deflation approach of [36] is successfully applied to the bending of a cantilever beam and to the sta-
tionary Stokes problem. Piecewise constant and linear approximations are used to approximate the eigenmodes associated
with the low frequencies. In [30] the deflation technique is applied to precondition a Schur complement matrix for second
order operators arising from the partition used for parallel computing on each processor. In [31] the deflation technique is
coupled to a damped Jacobi preconditioning still relying on a subdomain deflation. For unsymmetric problems, similar ideas
were applied for the restart step of the GMRES algorithm in [34,21,12,6]. A few converged eigenvector approximations re-
lated to the smallest eigenvalues were saved in order to remove them from the spectrum. More recently, deflation was used
for symmetric positive definite (SPD) matrices in [12] for an augmented conjugate gradient, where the Krylov subspace gen-
erated by a previous system is recycled for further solves in subsequent systems, and in [39], where the approximation of the
eigenvectors proposed in [34] is used to augment the space of the subsequent system to deflate the lowest eigenvalues. Com-
pared to the approach of [29–31] the main difference is that the eigenvectors are explicitly computed and not approximated
through a subdomain deflation so that no knowledge of the solution is required for the subsequent solves. In [35,4] the pro-
jector relying on the deflation subspace is explicitely build from the structure of the coefficient matrix of the system to be
solved. Vuik and coworkers [43,14,44,45] applied the deflated technique in various contexts, including problems character-
ized by layers of large contrast in the porosity [44,45], where the approximated eigenvectors verify the partial differential
equation on each subdomain. In [14] some numerical experiments of deflated methods running on parallel machines are re-
ported, as well as new bounds on the effective condition number of deflated and preconditioned deflated conjugate gradi-
ents. It is shown that if grid refinement is performed, keeping the subdomain grid resolution fixed, the condition number is
insensitive to the grid size. Other possibilities for choosing the deflation vectors are proposed in [43]. Deflation is applied to
magnetostatic problems in [9,10], where the approximate eigenvectors used to the deflation subspace mimic the flux pat-
terns commonly sketched by engineers intuitively.

2.1. Theoretical considerations

The conjugate gradient [16] is the method of choice for solving SPD systems, such as Eq. (8), in an iterative way. Its mem-
ory requirements are minimal, which is particularly attractive for three dimensional problems. It may also be viewed as a
direct method, giving the solution in a finite number of steps in exact arithmetic, although it converges much faster in prac-
tice. Defining the residual r as
r ¼ b� A � x; ð9Þ

10198 R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208
the basic iterative step is given by
Dxk ¼ akðrk�1 þ ek�1Dxk�1Þ ¼ akvk; ð10Þ
where ak; ek�1 are scaling factors chosen so that successive increments are A-orthogonal to each other:
Dxk�1 � A � Dxk ¼ 0: ð11Þ
This yields
ek�1 ¼ �
rk�1 � A � Dxk�1

Dxk�1 � A � Dxk�1
ð12Þ
which may be simplified for linear systems by observing that
rk�1 � rk�2 ¼ �A � Dxk�1; ð13Þ
and hence,
ek�1 ¼ �
rk�1 � ðrk�1 � rk�2Þ

Dxk�1 � ðrk�1 � rk�2Þ
: ð14Þ
The parameter ak is obtained by forcing
A � ðxk�1 þ DxkÞ ¼ f ð15Þ
in a ‘matrix weighted’ sense by multiplication with Dxk
Dxk � A � Dxk ¼ Dxk � rk�1; ð16Þ
yielding
ak ¼
vk � rk�1

vk � A � vk
: ð17Þ
The CG algorithm generates a sequence x1; . . . ;xi such that
xi 2 x0 þ Ki; ð18Þ
where Ki ¼ spanfr0;A � r0; . . . ;Ai�1 � r0g is the Krylov subspace of dimension i generated by the initial residual r0 ¼ b� A � x0.
At each step, the approximation xi verifies:
kxex � xikA ¼ min
x2x0þKi

kxex � xkA; ð19Þ
where kxkA ¼ ðA � x;xÞ
1=2 and xex denotes the exact solution A � xex ¼ b. The classical a priori bound for the error in the A-

norm is
kxex � xkkA ¼ kekkA 6 2
ffiffiffiffi
j
p
� 1ffiffiffiffi

j
p
þ 1

� �k

ke0kA; ð20Þ
where j is the condition number of matrix A. However, as decribed in [42], the convergence speeds up as soon as the lowest
eigenvalues are ‘discovered’ by the convergence process, giving rise to a condition number based on the active i.e. the non-
discovered eigenvalues. Therefore, if some knowledge of the eigenmodes associated to the lowest eigenvalues is at hand,
removing them from the spectrum of A would improve convergence as compared to the classical conjugate gradient process.
That is what the deflated conjugate gradient (DCG) tries to achieve.

The basic step of the DCG algorithm simply adds one more (low-dimensional) search direction W � d for the increment
Dxk ¼ akðrk�1 þ ek�1Dxk�1 �W � dkÞ ¼ akvk: ð21Þ
The columns of the matrix W are a basis for the deflation subspace. d is of very low dimensionality (<100) as compared to x
(number of points in the mesh). Forcing successive increments to be A-orthogonal now yields:
Dxk�1 � A � ðrk�1 þ ek�1Dxk�1 �W � dkÞ ¼ 0: ð22Þ
The additional search direction is obtained by enforcing that all increments be A-orthogonal with W (i.e. WT � A � Dxk ¼ 08k):
WT � A �W � dk ¼WT � A � rk�1: ð23Þ
With dk, ek�1 is obtained from:
ek�1 ¼ �
ðrk�1 �W � dkÞ � A � Dxk�1

Dxk�1 � A � Dxk�1
; ð24Þ

R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208 10199
vk from
vk ¼ rk�1 þ ek�1Dxk�1 �W � dk; ð25Þ
and ak from Eq. (17).

2.2. Algorithmic implementation

An optimal algorithmic implementation is given in [39]:

– Define a preconditioning matrix: M.
– Define: bA ¼WT � A �W.
– Start: given x�1:
r�1 ¼ b� A � x�1bA � d0 ¼WT � r�1

x0 ¼ x�1 þW � d0

r0 ¼ b� A � x0:
– Compute: M � z0 ¼ r0.
– Solve: bA � d ¼WT � A � z0.
– Set: p0 ¼ �W � dþ z0.
– Do until convergence:
aj ¼ ðrj � zjÞ=ðpj � A � pjÞ
xjþ1 ¼ xj þ ajpj

rjþ1 ¼ rj � ajA � pj

M � zjþ1 ¼ rjþ1

bj ¼ ðrjþ1 � zjþ1Þ=ðrj � zjÞbA � dj ¼WT � A � zjþ1

pjþ1 ¼ zjþ1 þ bjpj �W � dj
As the dimensionality of d is low, the solution/inversion of bA is carried out using a skyline solver. The extra storage
requirements for the DPCG are very modest: both W and WT � A may be stored as linked lists [28] in two arrays of OðNpÞ,
where Np denotes the number of points in the mesh. This is in contrast with eigenvalue deflation, where storage increases
proportionally to the number of eigenvalues considered. The cost in terms of vector operations is also of OðNpÞ, i.e. very mod-
est as compared to the non-deflated PCG.

2.3. Definition of subdomains

The DCG technique requires the definition of a mapping W from the lower-dimensional basis d to the vector of unknowns
x. The simplest way of defining this mapping for a mesh-based system of equations is via the points of the mesh: local do-
mains (subdomains) or groups of points are assigned to a variable di. The entries in W are unity for the points of this region,
and zero for all other points. This is equivalent to the assumption of a constant shape-function in the subdomains. We have
implemented several ways of defining these regions. The two most commonly used are:

(a) Seedpoints:
For this (manual) technique, the user defines an arbitrary set of points, called seedpoints. Given a mesh, the closest mesh

points to the seedpoints are found, and a region number is assigned accordingly. Points not assigned to any region are then
added one layer at a time until all points have been assigned a region number.

(b) Advancing front:
Starting from a point where x is prescribed, neighbouring points are added until a specified number of points per region is

exceeded. The last set of points added is then used as a starting point for the next group. The procedure is repeated until all
points have been assigned a region number.
3. Examples

The deflated PCG solver has been tested on a variety of examples, a few of which are included here. We remark from the
outset that the main aim is the comparison of speed. Detailed comparison to experiments, mesh refinement studies, etc. of

10200 R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208
the basic scheme may be found in [24,41,11,19,18,20]. In all cases diagonal preconditioning was used in the isotropic mesh
regions, while linelet preconditioning [32,40] was used for the highly anisotropic mesh regions (boundary layer grid regions).
All examples were run on Intel Xeon 2.77 GHz machines, with either 4 Gbytes or 16 Gbytes of RAM.

3.1. Pipe flow

The first example considered is the classic Poiseuille pipe flow. Given that the pressure is prescribed at the outflow, and
that a pressure field has to establish itself along the pipe, the number of iterations required increases with the graph depth
(defined as the maximum minimal number of edges connecting any two points) of the finite element mesh. The physical
dimensions and parameters were set as follows:

– pipe radius: r ¼ 1,
– pipe length: l ¼ 20;40;80,
– density: q ¼ 1,
– inflow velocity: t ¼ 1,
– viscosity: l ¼ 0:01.

The element size was set to h ¼ 0:1, implying approximately a graph depth of gd ¼ 200;400;800 for the cases considered.
This resulted in grids of 129 Kels, 260 Kels and 516 Kels respectively. All cases were run for 100 timesteps. In order to assess
the sensitivity of the deflated PCG to the number of groups chosen, 15, 30 and 60 groups were chosen. The regions were gen-
erated automatically using the advancing front algorithm, starting from the exit (i.e. prescribed pressure) plane. Figs.
1(a)–(d) show the surface mesh, region boundaries for 15 groups, pressure and absolute value of the velocity for l ¼ 20.
Fig. 1(e) shows the number of iterations required for the PCG. The sudden ‘dips’ in the number of iterations at some time-
steps are due to the fact that a projective prediction of pressure increments with 2 Krylov vectors [26] was used. Note the
dramatic decrease in the number of iterations achieved by the deflated PCG solver. This decrease may also be seen in Fig. 1(f),
which depicts the average number of iterations for the first 20 steps for the different options chosen. While the number of
iterations increases linearly with pipe length for the conventional PCG, the performance of the deflated PCG solver is rather
insensitive to the number of the groups chosen. To highlight the importance of a fast Pressure–Poisson solver, the total CPU
requirements are compared in Fig. 1(g). Note that for the case l ¼ 80 the same solver with deflated PCG runs seven times
faster (!).

3.2. NACA0012

The second example considered is the classic NACA0012 wing at a ¼ 5� angle of attack. This is a steady, inviscid case (Eu-
ler). Figs. 2(a) and (b) show the surface mesh employed, as well as the surface pressures obtained. The mesh had approxi-
mately 370 Kels. This problem was solved using local timesteps to accelerate convergence to steady-state. The seedpoints
used are shown in Fig. 2(c). These were input by hand, and the regions for the deflated PCG were grown from them.
Fig. 1(a,b). Pipe: surface mesh and deflation groups for l ¼ 20.

Fig. 1(c,d). Pipe: pressure and Abs(velocity) for plane z ¼ 0.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

Ite
ra

tio
ns

Timestep

L=20, Defla(15)
L=40, Defla(15)
L=80, Defla(15)
L=20, Defla(30)
L=40, Defla(30)
L=80, Defla(30)

L=20, Non-Defla
L=40, Non-Defla
L=80, Non-Defla

Fig. 1(e). Pipe: number of iterations required.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80

Ite
ra

tio
ns

Len th

Non-Defla
Defla(15)
Defla(30)
Defla(60)

Fig. 1(f). Pipe: number of iterations required.

R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208 10201

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 10 20 30 40 50 60

C
P

U

Deflation-Groups

L=20
L=40
L=80

Fig. 1(g). Pipe: CPU required for 100 timesteps.

Fig. 2(a,b). NACA 0012: surface mesh and pressure.

10202 R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208
Fig. 2(d) shows the number of iterations as the solution is advanced to steady state. One can observe that even on this rather
coarse mesh with limited graph depth between the outflow, prescribed pressure boundary and the airfoil, the deflated PCG
requires approximately half the iterations of the usual PCG. The overall savings in CPU time were of the order of 10%.

3.3. von Karman vortex street

The third example considered is also a well known benchmark case. A circular cylinder is suspended in a uniform stream of
incompressible fluid. The separation at the back of the cylinder generates the so-called von Karman vortex street, whose char-
acteristics depend on the Reynolds number Re ¼ qV1D=l, where D denotes the diameter of the cylinder. This is essentially a
2-D example, but was run with the 3-D solver. A mesh of 113 Kels was used for the simulation, with special placement of points
in the vicinity of the cylinder. The parameters were chosen such that the resulting Reynolds number was Re ¼ 190.

Figs. 3(a), 3(b), 3(c) show the surface grid and the absolute value of the velocity in a cut plane. The run was started impul-
sively and continued until the vortex street was fully developed. Starting from this (restart) state, the solution was advanced
50 steps using a 3-stage Runge–Kutta scheme for the advection, and the different deflation options were excercised and com-
pared to one another. The regions of a typical run with deflated PCG are shown in Fig. 3(d). The iterations required per time-

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60

Ite
ra

tio
ns

Timestep

Defla(39)
Non-Defla

c d

Fig. 2(c,d). NACA 0012: seed points and iterations.

Fig. 3(a). von Karman vortex street: surface mesh.

Fig. 3(b). von Karman vortex street: surface mesh (detail).

R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208 10203
step are displayed in Fig. 3(e). One can observe that the deflated PCG requires substantially less iterations, and is rather
insensitive to the number of domains chosen.

Fig. 3(c). von Karman vortex street: Abs(Veloc).

Fig. 3(d). von Karman vortex street: deflated PCG regions.

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40 45 50

Ite
ra

tio
ns

Timestep

Defla(18)
Defla(14)

Non-Defla

Fig. 3(e). von Karman vortex street: iteration count.

10204 R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208

R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208 10205
3.4. Cerebral aneurysm

The fourth example is an image-based patient-specific model of a cerebral aneurysm with its parent vessel. The model
was constructed using patient-specific three-dimensional rotational angiography (3DRA) images [5]. The blood was consid-
ered as a Newtonian fluid, which is modeled by the unsteady incompressible Navier–Stokes equations. Fig. 4(a) shows the
surface mesh of the complete model (left), a close-up view of the aneurysm (right-top) and a closer-up view of the surface
elements (right-bottom). The volume mesh has 646 K points and 3.6 M elements.

The groups were constructed using the seedpoints alternative, where 45 points were selected manually from the surface
model (see Fig. 4(b)). The simulation was performed using implicit timestepping, solving a pseudo-steady problem at each
timestep [27]. Within each pseudo-timestep the advective terms were integrated implicitly using 5 LU-SGS passes (local
Fig. 4(a). Patient-specific model of a cerebral aneurysm.

Fig. 4(b). Seed-points used.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
 (

cm
3/

se
c)

time (sec)

Flow Rate Waveform

Fig. 4(c). Flow rate imposed at inflow.

Fig. 4(d). Pressure and wall shear stress (WSS) at time T = 1.4 s.

10206 R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208
Courant number C ¼ 5:0), followed by the pressure projection. The timestep was set to Dt ¼ 0:01 s. The material properties
of the fluid were taken to be q ¼ 1:0 g=cm3 and l ¼ 0:04Poise. The pressure was prescribed (homogeneous bc) at the outflow
(top part), while a time-dependent velocity profile was prescribed at the inflow (bottom part). The velocity profile was com-

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

ite
ra

tio
ns

global time step

Number of Iteration - First Pseudo Time Step

no-deflated
45-deflated

Fig. 4(e). Iterations required to solve the Pressure–Poisson system.

R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208 10207
puted using a Womersley model with measured inflow rates as described in [5]. Fig. 4(c) shows the inflow rate curve for one
cardiac cycle. No-slip boundary conditions were applied at the vessel wall.

This case was run for 200 time steps (two cardiac cycles). Fig. 4(d) depicts the pressure (left and top) and wall shear stress
(right and bottom) at time T ¼ 1:4 s (second cardiac cycle, just after the inflow rate peak).

Fig. 4(e) shows the number of iterations required for the Pressure–Poisson solver during the first pseudo time step of each
implicit timestep with and without deflation. Note that, without deflation, the number of iterations reaches the pre-set limit
of 1200 without having converged. This is expected since it corresponds to the first pseudo time step, where the inflow
boundary conditions have just changed. However, the periodicity (in time) of the boundary conditions is reflected in the
number of iterations for the deflated case, showing convergence even though we are in the first pseudo time step. The deep
peaks found in the non-deflated case around time t ¼ 1 s are due to the slow variation in inflow rate at the end of the cardiac
cycle. This slow variation makes the solution of the previous time step a very good initial guess for the next time step. The
total CPU time required to complete the simulation without deflation was 51 h 47 m, while with deflation was 19 h 10 m,
about 2.7 times faster.

4. Conclusions

A deflated preconditioned conjugate gradient technique has been developed for the solution of the Pressure–Poisson
equation within an incompressible flow solver. The deflation is done using a region-based decomposition of the unknowns,
making it extremely simple to implement.

For all cases tried to date, this procedure has shown a considerable reduction in the number of iterations. For grids with
large graph-depth the savings may exceed an order of magnitude. Moreover, the technique has shown a remarkable insen-
sitivity to the number of groups/regions chosen, and to the way the groups are formed.

Future work will explore more complex deflation matrices W, allowing for linear or distance-based shape functions.

Acknowledgments

It is a pleasure to acknowledge the input of Guillaume Pierrot and Jean Roger from ESI-Group, Rungis, France, who first
informed us on the potential of DPCG methods for the Pressure–Poisson equation.

This work was partially supported by DTRA. The technical monitors were Drs. Michael Giltrud, Young Sohn and Ali Amini.

References

[1] B. Alessandrini, G. Delhommeau, A multigrid velocity–pressure-free surface elevation fully coupled solver for calculation of turbulent incompressible
flow around a hull, in: Proc. 21st Symp. on Naval Hydrodynamics, Trondheim, Norway, June, 1996.

[2] J.B. Bell, P. Colella, H. Glaz, A second-order projection method for the Navier–Stokes equations, J. Comp. Phys. 85 (1989) 257–283.

10208 R. Aubry et al. / Journal of Computational Physics 227 (2008) 10196–10208
[3] J.B. Bell, D.L. Marcus, A second-order projection method for variable-density flows, J. Comp. Phys. 101 (1992) 2.
[4] S.S. Bielawski, S.G. Mulyarchik, A.V. Popov, The construction of an algebraically reduced system for the acceleration of preconditioned conjugate

gradients, J. Comput. Appl. Math. 70 (2) (1996) 189–200.
[5] J.R. Cebral, M.A. Castro, S. Appanaboyina, C.M. Putman, D. Millan, A.F. Frangi, Efficient pipeline for image-based patient-specific analysis of cerebral

aneurysm hemodynamics: technique and sensitivity, IEEE Trans. Med. Imaging 24 (1) (2005) 457–467.
[6] A. Chapman, Y. Saad, Deflated and augmented Krylov subspace with eigenvectors, Numer. Linear Algebra Appl. 4 (1997) 43–66.
[7] N.H. Chen, Multigrid methods for the incompressible Navier–Stokes problem on three-dimensional ynstructured meshes, Ph.D. thesis, George Mason

University, 2004.
[8] R. Codina, Pressure stability in fractional step finite element methods for incompressible flows, J. Comp. Phys. 170 (2001) 112–140.
[9] H. De Gersem, K. Hameyer, Convergence improvement of the conjugate gradient iterative method for finite element simulations, COMPEL (2000) 20-

90-97.
[10] H. De Gersem, K. Hameyer, Deflated iterative solver for magnetostatic finite element models with large differences in permeability, Eur. Phys. J. Appl.

Phys. 13 (2000) 45–49.
[11] E. Eaton, Aero-Acoustics in an Automotive HVAC Module American PAM User Conf, 24–25, Birmingham, Michigan, 2001. October.
[12] J. Erhel, K. Burrage, B. Pohl, Restarted GMRES preconditioned by deflation, J. Comput. Appl. Math. 69 (1996) 303–318.
[13] P.F. Fischer, Projection techniques for iterative solution of Ax = b with successive right-hand sides, Comp. Meth. Appl. Mech. Eng. 163 (1998) 193–204.
[14] J. Frank, C. Vuik, On the construction of deflation-based preconditioners, SIAM J. Sci. Comput (2001) 23-442-462.
[15] M.D. Gunzburger, R. Nicolaides (Eds.), Incompressible Computational Fluid Dynamics: Trends and Advances, Cambridge University Press, 1993.
[16] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand (1952) 49-409-436.
[17] Y. Kallinderis, A. Chen, An Incompressible 3-D Navier–Stokes Method with Adaptive Hybrid Grids, 1996. AIAA-96-0293.
[18] Y. Li, T. Kamioka, T. Nouzawa, T. Nakamura, Y. Okada, N. Ichikawa, Verification of Aerodynamic Noise Simulation by Modifying Automobile Front-Pillar

Shape; JSAE 20025351, JSAE Annual Conf., Tokyo, July, 2002.
[19] K.J. Karbon, S. Kumarasamy, Computational aeroacoustics in automotive design, computational fluid and solid mechanics, in: Proc. First MIT

Conference on Computational Fluid and Solid Mechanics, 871-875, Boston, June, 2001.
[20] K.J. Karbon, R. Singh, Simulation and design of automobile sunroof buffeting noise control, in: 8th AIAA-CEAS Aero-Acoustics Conf., Brenckridge, June,

2002.
[21] S.A. Kharchenko, A.Yu. Yeremin, Eigenvalue translation based preconditioners for the GMRES (k) method, Numer. Linear Algebra Appl. 2 (1995) 51–70.
[22] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier–Stokes equations, J. Comp. Phys. 59 (1985) 308–323.
[23] R. Löhner, A Fast Finite Element Solver for Incompressible Flows, 1990. AIAA-90-0398.
[24] R. Löhner, C. Yang, E. Oñate, S. Idelssohn, An unstructured grid-based, parallel free surface solver, Appl. Num. Math. 31 (1999) 271–293.
[25] R. Löhner, Multistage explicit advective prediction for projection-type incompressible flow solvers, J. Comp. Phys. 195 (2004) 143–152.
[26] R. Löhner, Projective prediction of pressure increments, Comm. Num. Meth. Eng. 21 (4) (2005) 201–207.
[27] R. Löhner, Chi Yang, J.R. Cebral, F. Camelli, O. Soto, J. Waltz, Improving the speed and accuracy of projection-type incompressible flow solvers, Comp.

Meth. Appl. Mech. Eng. 195 (23-24) (2006) 3087–3109.
[28] R. Löhner, Applied CFD Techniques, J. Wiley & Sons, London, 2008.
[29] L. Mansfield, On the use of deflation to improve the convergence of the conjugate gradient iteration, Comm. Appl. Num. Meth. 4 (1988) 151–156.
[30] L. Mansfield, On the conjugate gradient solution of the Schur complement system obtained from domain decomposition, SIAM J. Numer. Anal. 27

(1990) 1612–1620.
[31] L. Mansfield, Damped Jacobi preconditioning and coarse grid deflation for conjugate gradient iteration on parallel computers, SIAM J. Numer. Anal. 12

(1991) 1314–1323.
[32] D. Martin, R. Löhner, An Implicit Linelet-Based Solver for Incompressible Flows, 1992. AIAA-92-0668.
[33] S.F. McCormick, Multigrid methods, SIAM, 1987.
[34] R.B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal. Appl. 16 (1995) 1154–1171.
[35] S.G. Mulyarchik, S.S. Bielawski, A.V. Popov, Efficient computational method for solving linear systems, J. Comput. Phys. 110 (1994) 201–211.
[36] R.A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problems, SIAM J. Numer. Anal. 24 (1987) 355–365.
[37] R. Ramamurti, R. Löhner, A parallel implicit incompressible flow solver using unstructured meshes, Comput. Fluids 5 (1996) 119–132.
[38] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 1996.
[39] Y. Saad, J. Yeung, J. Erhel, F. Guyomarc’h, A deflated version of the conjugate gradient algorithm, SIAM J. Sci. Comput 21 (2000) 1909–1926.
[40] O. Soto, R. Löhner, F. Camelli, A linelet preconditioner for incompressible flows, Int. J. Numer. Method Heat Fluid Flow 13 (1) (2003) 133–147.
[41] A. Takamura, M. Zhu, D. Vinteler, Numerical Simulation of Pass-by Maneuver Using ALE Technique, JSAE Annual Conf. (Spring), Tokyo, May, 2001.
[42] A. van der Sluis, H.A. van der Vorst, The rate of convergence of the conjugate gradients, Numerische Mathematik 48 (1986) 543–560.
[43] F. Vermolen, C. Vuik, A. Segal, Deflation in preconditioned conjugate gradient methods for finite element problems, in: M. Kr̆iz̆ek, P. Neittaanmäki, R.

Glowinski, S. Korotov (Eds.), Conjugate Gradient and Finite Element Methods, Springer, Berlin, 2004, pp. 103–129.
[44] C. Vuik, A. Segal, J.A. Meijerink, An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the

coefficients, J. Comp. Phys. 152 (1999) 385–403.
[45] C. Vuik, A. Segal, J.A. Meijerink, G.T. Wijma, The construction of projection vectors for a deflated ICCG method applied to problems with extreme

contrasts in the coefficients, J. Comp. Phys. 172 (2001) 426–450.
[46] J. Waltz, R. Löhner, A Grid Coarsening Algorithm for Unstructured Multigrid Applications, 2000. AIAA-00-0925.
[47] J. Waltz, Unstructured Multigrid Methods, Ph.D. thesis, George Mason University, 2000.

	Deflated preconditioned conjugate gradient solvers for the pressure poisson Pressure-Poisson equation
	Introduction
	Deflated conjugate gradients
	Theoretical Considerationsconsiderations
	Algorithmic Implementationimplementation
	Definition of Subdomainssubdomains

	Examples
	Pipe Flowflow
	NACA0012
	von Karman Vortex Streetvortex street
	Cerebral Aneurysmaneurysm

	Conclusions
	AcknowledgementAcknowledgments
	References

